1.

A curve has parametric equations $x = t + \frac{2}{t}$ and $y = t - \frac{2}{t}$, for $t \neq 0$.

dv(a)

[4]

Find dx in terms of t, giving your answer in its simplest form.

(b) Explain why the curve has no stationary points.

[2]

By considering x + y, or otherwise, find a cartesian equation of the curve, giving your answer in a form not involving fractions or brackets.

[4]

2. The parametric equations of a curve are

$$x = 2 + 3 \sin \theta$$
 and $y = 1 - 2 \cos \theta$ for $0 \le \theta \le \frac{1}{2}\pi$.

Find the coordinates of the point on the curve where the gradient is $\frac{1}{2}$. i.

[5]

ii. Find the cartesian equation of the curve.

[2]

- 3. A curve has parametric equations $x = 1 - \cos t$, $y = \sin t \sin 2t$, for $0 \le t \le \pi$.
 - i. Find the coordinates of the points where the curve meets the *x*-axis.

[3]

Show that $\frac{dy}{dx} = 2\cos 2t + 2\cos^2 t$. Hence find, in an exact form, the coordinates of ii. the stationary points.

[7]

iii. Find the cartesian equation of the curve. Give your answer in the form y = f(x), where f(x) is a polynomial.

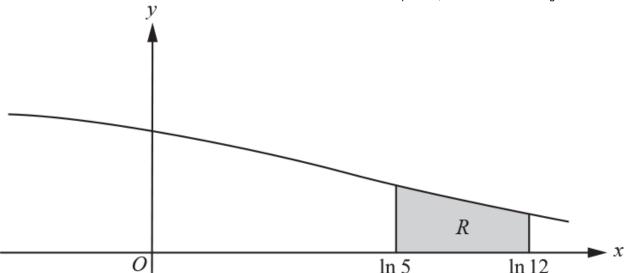
[3]

iv. Sketch the curve.

[2]

- The parametric equations of a curve are given by $x = 2\cos\theta$ and $y = 3\sin\theta$ for $0 \le \theta < 2\pi$.
 - (a) $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of θ . [2]

The tangents to the curve at the points P and Q pass through the point (2, 6).


- Show that the values of θ at the points P and Q satisfy the equation $2\sin\theta + \cos\theta = 1.$ [4]
- (c) Find the values of θ at the points P and Q. [5]
- A curve is defined by the parametric equations $x = \frac{2t}{1+t}$ and $y = \frac{t^2}{1+t}$, $t \neq -1$.
 - (a) (i) Show that the curve passes through the origin. [1]
 - (ii) Find the y-coordinate when x = 1. [1]
 - (b) Show that the area enclosed by the curve, the x-axis and the line x = 1 is given by

$$\int_{0}^{1} \frac{2t^2}{(1+t)^3} \, \mathrm{d}t. \tag{5}$$

(c) In this question you must show detailed reasoning.

Hence use an appropriate substitution to find the exact area enclosed by the curve, the x-axis and the line x = 1.

6.

$$x = \ln(t^2 - 4), \quad y = \frac{4}{t^2}, \text{ where}$$

The diagram shows the curve with parametric equations t > 2.

The shaded region R is enclosed by the curve, the x-axis and the lines $x = \ln 5$ and $x = \ln 12$.

(a) Show that the area of R is given by

$$\int_{a}^{b} \frac{8}{t(t^2 - 4)} \mathrm{d}t,$$

where a and b are constants to be determined.

[4]

(b) In this question you must show detailed reasoning.

Hence find the exact area of R, giving your answer in the form lnk, where k is a constant to be determined.

[8]

(c) Find a cartesian equation of the curve in the form y = f(x).

[3]

7.

A curve has parametric equations $x = \frac{1}{t} - 1$ and $y = 2t + \frac{1}{t^2}$.

- Find $\frac{dy}{dx}$ in terms of t, simplifying your answer.

- [3]
- ii. Find the coordinates of the stationary point and, by considering the gradient of the curve on either side of this point, determine its nature.
 - [4]

iii. Find a cartesian equation of the curve.

[2]

 $\frac{x+8}{x(x+2)}$ Express $\frac{x+8}{x(x+2)}$ in partial fractions. 8.

- [3]
- By first using division, express $\frac{7x^2+16x+16}{x(x+2)}$ in the form $P+\frac{Q}{x}+\frac{R}{x+2}$ ii.
- [3]

A curve has parametric equations $x = \frac{2t}{1-t}$, $y = 3t + \frac{4}{t}$

- Show that the cartesian equation of the curve is iii.
- $y = \frac{7x^2 + 16x + 16}{x(x+2)}$
- iv. Find the area of the region bounded by the curve, the x-axis and the lines x = 1 and x = 1= 2. Give your answer in the form $L + M \ln 2 + N \ln 3$.
 - [4]

[4]

9. The parametric equations of a curve are © OCR 2017.

$$x = \frac{1}{\sqrt{2+t}}$$
 and $y = t^8 - 3t$ for $-2 < t \le 0$.

(i) $\frac{\mathrm{d}y}{\mathrm{Find}} \frac{\mathrm{d}x}{\mathrm{d}x}$ in terms of t.

- [3]
- (ii) Find the coordinates of the stationary point on the curve and determine its nature. [4]
- (iii) State the range of values of x and the range of values of y.

[2]

(iv) Sketch the curve.

[1]

10. A curve is defined, for $t \ge 0$, by the parametric equations

$$x = t^2$$
, $y = t^3$.

(a) Show that the equation of the tangent at the point with parameter t is

$$2y = 3tx - t^3$$
. [4]

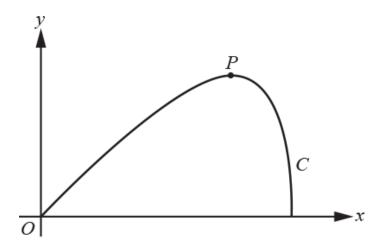
- (b) In this question you must show detailed reasoning.
 - It is given that this tangent passes through the point $A\left(\frac{19}{12}, -\frac{15}{8}\right)$ and it meets the *x*-axis at the point *B*.
 - Find the area of triangle OAB, where O is the origin.

[7]

[5]

[3]

[3]


11. A curve has parametric equations

$$x = 2 \sin t$$
, $y = \cos 2t + 2 \sin t$

for
$$-\frac{1}{2}\pi \le t \le \frac{1}{2}\pi$$

- i. Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 2\sin t$ and hence find the coordinates of the stationary point.
- ii. Find the cartesian equation of the curve.
- iii. State the set of values that x can take and hence sketch the curve.

12.

The diagram shows the curve C with parametric equations

$$x = \frac{1}{4}\sin t, \quad y = t\cos t,$$

where $0 \le t \le k$.

(a) Find the value of k. [2]

(b) $\frac{dy}{dt}$ in terms of t.

[2]

The maximum point on C is denoted by P.

- (c) Using your answer to part (b) and the standard small angle approximations, find an approximation for the *x*-coordinate of *P*.
- [4]
- (d) (i) Show that the area of the finite region bounded by C and the x-axis is given by

$$b\int_0^a t(1+\cos 2t)\,\mathrm{d}t,$$

where a and b are constants to be determined.

[3]

[5]

- (ii) In this question you must show detailed reasoning.
 - Hence find the exact area of the finite region bounded by C and the x-axis.

END OF QUESTION paper

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
1	uestio	a	Answer/Indicative content $\frac{dx}{dt} = 1 - 2t^{-2}$ $\frac{dy}{dt} = 1 + 2t^{-2}$ $\frac{dy}{dx} = \frac{1 + 2t^{-2}}{1 - 2t^{-2}} = \frac{\frac{t^2 + 2}{t^2}}{\frac{t^2 - 2}{t^2}}$	B1 (AO 1.1) B1 (AO 1.1) M1 (AO 1.1a)	Correct $\frac{\mathrm{d}x}{\mathrm{d}t}$ Correct	Any equivalent form Any equivalent form Division	nd guidance
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{t^2 + 2}{t^2 - 2}$	A1 (AO 1.1)	$\frac{\mathrm{d}y}{\mathrm{d}t}$	must be correct way around	
				[4]	Attempt correct method to combine their derivatives	Allow any simplified equivalent such as $1 + \frac{4}{t^2 - 2}$	
					Obtain correct derivative		
					Most candidate least 3 marks a correct expressive, but subsequent sign proved to be rechallenging. On who worked we tended to be resuccessful that worked with no indices. The neuror was 'car single term in and denominate.	tes gained at for obtaining ression for the the implification more Candidates with fractions more an those who egative most common incelling' just a the numerator	

Question	Answer/Indicative content	Marks		Part marks and guidance
b	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow t^2 + 2 = 0$	E1ft (AO 2.2a)	Justify $t^2 + 2 = 0$ for stat point	Must state that gradien decorate the formula of the
	$t^2 \ge 0$, hence $t^2 + 2 = 0$ has no solutions, hence curve has no stationary points	E1 (AO 2.4)	Justify no stationary points	Allow use of a gradient that is no longer a fraction
		[2]		Explain why there are no solutions eg referring to $t^2 + 2 \ge 2$ eg t^2 is always positive (as $t \ne 0$ given) eg $t^2 + 2 = 0$ has no real roots
				and conclude with 'no stationary points'
				Must now be from a fully correct derivative only
			Whilst most covere able to a correct method	andidates attempt the

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
					just equating to 0 examiners see some just this, such as a that the gradie	g. Rather than the derivative is expected to iffication for a statement ent is 0 at a nt. Candidates sected to be equation t^2 or real roots ding that this vere no	
		С	x + y = 2t hence	B1 (AO 1.1)	Correct expression for t	Any correct equation involving t	
			$t = \frac{1}{2}(x+y)$	M1	101 1	along with x and/or y where t only appears once	
				(AO 1.2)	Substitute for <i>t</i> into		
			$x = \frac{1}{2}(x+y) + \frac{2}{\frac{1}{2}(x+y)}$		either equation	Expression for <i>t</i> must be correct Could be using attempt	
				M1 (AO 3.1a)	A44	(possibly no longer correct) at	
			$2x(x + y) = (x + y)^{2} + 8$ $2x^{2} + 2xy = x^{2} + 2xy + y^{2} + 8$	A1 (AO 1.1)	Attempt rea a rrangement rearranged parametric equation eg Correct $xt - t^2 = 2$		
			$x^2 - y^2 = 8$		equation	As far as requested form	
				[4]			
						Any correct three term	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
			equivalent	
			Allow A1 $y = \pm \sqrt{x^2 - 8}$	
			forutega0 if	
			not ±	
			Examiner's Comments	
			Many candidates were able to use the hint given in the	
			question to produce $x + y =$	
			2 <i>t</i> but a number were then	
			unsure how to make any	
			further progress. Others	
			appreciated that they could	
			now use this equation to eliminate <i>t</i> from one of the	
			given parametric equations,	
			but errors when rearranging	
			to the requested from were	
			common, demonstrating a	
			lack of confidence when	
			dealing with algebraic	
			fractions. A minority of	
			candidates ignored the hint given in the question, and	
			attempted to use an	
			alternative method such as	
			rearranging to $t^2 - xt + 2 =$	
			0, solving for <i>t</i> and	
			substituting into the other	
			equation. Whilst some	
			progress was usually made,	
			these attempts were rarely fully correct. The most	
			elegant solution, provided	
			by a few candidates, was to	
			consider both $x + y$ and $x - y$	
			y to produce two equations	
			from which 2 <i>t</i> could then be	
			easily eliminated.	
	Total	10		

Ques	tion	Answer/Indicative content	Marks	Part marks and guidance		
2	i	their $\frac{dy}{d\theta} / \frac{dx}{d\theta}$	M1			
	i	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sin\theta}{3\cos\theta}$	A1			
	i	their $\frac{dy}{dx} = \frac{1}{2}$	M1			
	i	$\tan \theta = \frac{3}{4}$ $(3.8,-0.6) \operatorname{or} \left(\frac{19}{5}, -\frac{3}{5}\right) \text{ or } x = 3.8, y = -0.6$	A1	If $\tan \theta = \frac{3}{4}$ not seen, award this A1 only if coords are correct Examiner's Comments This was generally done well though a few were unable to manipulate the equation $\frac{2}{3} \tan \theta = \frac{1}{2}$ into its simpler version $\tan \theta = \frac{3}{4}$. Apart from rounding errors, the actual coordinates were then relatively easy to find.		
	ii	Manipulating equations into form $\sin \theta = f(x)$ and $\cos \theta = g(y)$ and then using $\sin^2 \theta + \cos^2 \theta = 1$	M1	If part (ii) is attempted first, and then part (i), allow B1 for obtaining $\frac{dy}{dx} = \frac{4(x-2)}{9(y-1)}$ M1 for equating their $\frac{dy}{dx}$ to $\frac{1}{2}$	the following marks in part (i): –	

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	$\frac{(x-2)^2}{9} + \frac{(1-y)^2}{4} = 1 \text{ oe www ISW}$ Accept e.g. $\left(\frac{x-2}{3}\right)^2$ $4x^2 + 9y^2 - 16x - 18y - 11 = 0$	A1	A1 for obtaining $9y - 8x = -7$ M1 for eliminating x or y from above eqn A1 for $(3.8,-0.6)$ Examiner's Comments A large number of candidates assumed that the required cartesian equation had to be linear, or that inverse trigonometrical functions would be acceptable in the answer. A few said that $\cos \theta = \frac{y-1}{2}$ and then used it in the equation $\cos^2 \theta + \sin^2 \theta = 1$; although $\left(\frac{y-1}{2}\right)^2$ and $\left(\frac{1-y}{2}\right)^2$ were equivalent at that stage, an earlier mistake had been seen and was consequently penalised.	and their Cartesian equation	
	Total	7			

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
3		i	sintsin2t = 0 oe seen	M1		NB $t = 0, \frac{1}{2}\pi, \pi$	
		i	(0, 0) (1, 0) and (2, 0) or x = 0, x = 1, x = 2 cao	A2	A1 for two of three correct	deduct 1 mark if all three correct plus extra values if A0, allow SC1 for $t = 0$, $\frac{1}{2}\pi$, π if unsupported, full marks for all three values correct	
						Examiner's Comments	
						Most candidates set $y = 0$, but few went on to successfully find all three values. Surprisingly, $(0, 0)$ was almost as commonly omitted as $(1, 0)$ and $(2, 0)$.	
		ii	$\left[\frac{\mathrm{d}y}{\mathrm{d}t}\right] = 2\sin t \cos 2t + \cos t \sin 2t$	B1	or 4sin <i>t</i> cos ² t – 2sin ³ t		
		ii	$\frac{(2\sin t\cos 2t + \cos t\sin 2t)}{\sin t}$	M1	allow sign errors and/or one incorrect coefficient		
			or				
			$\frac{(4\sin t\cos^2 t - 2\sin^3 t)}{\sin t}$				
		ii	substitution of $\sin 2t = 2\sin t$ $\cos t$ in their $\frac{(2\sin t \cos 2t + \cos t \sin 2t)}{\sin t}$	M1	may be seen before differentiation		
			and completion to				
		ii	2cos2t + 2cos ² t www NB AG	A1	at least one correct intermediate step needed		
		ii	eg $2(2\cos^2 t - 1) + 2\cos^2 t = 0$ or $2\cos 2t + 2 \times \frac{1}{2}(1 + \cos 2t)$ = 0	M1	use of double angle formula to obtain quadratic equation in eg cost or linear equation in cos2t; may be seen before differentiation	mark intent: allow sign error, bracket error, omission of one coefficient	
		ii	$(1 + \frac{1}{\sqrt{3}}, \frac{-4}{3\sqrt{3}})$ oe isw	A1		eg $(\frac{\sqrt{3}+3}{3}, -\frac{4\sqrt{3}}{9})$	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
		ii	$(1 - \frac{1}{\sqrt{3}}, \frac{4}{3\sqrt{3}})$ oe isw	A1	if A0, A0, allow A1 for both x values correct	Examiner's Comments	
						Many candidates knew what to do to obtain the required result, and there were many examples of clear, well-structured solutions. Most realised the need to resolve the double angle for the next part of the question, and many made no further progress. Only the best candidates went on to obtain both pairs of coordinates correctly.	
		iii	$y = 2(1 - \cos^2 t) \cos t$ oe may be implicit equation, may be implied by partial substitution for $\cos t$	M1	or $\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos^2 t - 2$	use of double angle formula (and Pythagoras) to obtain expression for $\frac{y}{dx}$ or $\frac{dy}{dx}$ in terms $\cos t$ only;	
			$\operatorname{eg} (1-x)^2 + \frac{y}{2\cos t} = 1$				
		iii	$y = 2(1 - (1 - x)^2)(1 - x)$	M1	or $\frac{dy}{dx} = 6(1-x)^2 - 2$	substitution of $\cos t = \pm 1 \pm x$ to obtain expression in terms of x only allow sign errors, bracket errors or minor slips in arithmetic eg omission of 2 for these method marks	

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
		iii	$y = 2x^3 - 6x^2 + 4x$ or $y = 2x$ $(x^2 - 3x + 2)$ or $y = 2x(x - 1)(x - 2)$ oe cao	A1	integration and substitution of eg (0, 0) to obtain correct answer must see <i>y</i> = at some stage for A1	Examiner's Comments A significant number of candidates worked immediately with inverse trig functions and failed to score - not realising that they could not achieve a polynomial expression by this route. Many candidates appreciated the need to use the double angle formula and Pythagoras, but mistakes in expanding brackets were common and the "2" was frequently omitted following substitution. Expressing cost in terms of <i>x</i> often went wrong and the high frequency of algebraic slips prevented many candidates from achieving full marks.
		iv	cubic with two turning points and of correct orientation through $(0, 0)$ x -intercepts correct and only for $0 \le x \le 2$	M1 A1		Examiner's Comments Not many candidates made the connection between this part of the question and earlier work. Cubics of the right orientation and with the right intercepts were sometimes seen, but very few candidates appreciated the restriction on the <i>x</i> -values. Nevertheless, a few candidates who had made little progress in earlier parts of the question reached for their graphical calculators and achieved both marks.

Questi	on	Answer/Indicative content	Marks	Part marks and guidance		
4	а	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}\theta}{\mathrm{d}x}$	M1(AO1. 1a)			
		Obtain $\frac{-3\cos\theta}{2\sin\theta}$	A1(AO1. 1)			
			[2]			
	b	$(y - 3\sin\theta) = \frac{-3\cos\theta}{2\sin\theta}(x - 2\cos\theta)$ $2y\sin\theta - 6\sin^2\theta = -3x\cos\theta + 6\cos^2\theta$	M1(AO1. 1)	Attempt equation of straight line in any unsimplifie d form Accept x , y confusion Simplify their equation and use $\cos^2 \theta + \sin^2 \theta = 1$	OR M1 When θ = θ_Q , gradient of curve is given by $\frac{-3\cos\theta_Q}{2\sin\theta_Q}$ M1 The gradient of the line through (2,6) and (2cos θ_Q	
		$2y \sin\theta + 3x \cos\theta = 6$ $12\sin\theta + 6\cos\theta = 6 \Rightarrow 2\sin\theta + \cos\theta = 1$	1.1) E1(AO2. 1)		,3 $\sin\theta_Q$)is M1 Equate and clear fractions	
			[4]		E1 Obtain AG	
				Substitute (2, 6) and simplify to AG		

Question	Answer/Indicative content	Marks	Part marks and guidance		
C	Use $R\sin(\theta + \alpha)$ on $2\sin\theta + \cos\theta$ $R\sin\alpha = 1$, $R\cos\alpha = 2$ Obtain $\alpha = 0.4636$ and $R = \sqrt{5}$ Use correct order of operations to solve $\sqrt{5}\sin(\theta + 0.4636) = 1$ Obtain 0	M1(AO3. 1a) A1(AO1. 1) M1(AO1. 1) B1(AO2. 2a) A1(AO1. 1) [5]	Should go as far as finding R and α Allow alternative forms Attempt to solve their Rsin (θ + α) Or better (2.214345)	OR M1 Square and use $\sin^2\theta + \cos^2\theta = 1$ A1 $4\sin^2\theta + 4\sin\theta (1 - 2\sin\theta) + (1 - \sin^2\theta) = 1$ M1 Simplify and solve $5\sin^2\theta - 4\sin\theta = 0$	
	Total	11			

Q	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
5		а	(a) when x = 0, t = 0 and hence y = 0	E1(AO2. 4) [1]	Justify (0, 0) convincingl y		
		а	(b) when x = 1, t = 1 and hence y = 0.5	B1(AO1. 1) [1]	Obtain <i>y</i> = 0.5		
		b	$\frac{dx}{dt} = \frac{2}{(1+t)^2}$ $\int \frac{t^2}{1+t} dx = \int \frac{t^2}{1+t} \times \frac{2}{(1+t)^2} dt$ $= \int \frac{2t^2}{(1+t)^3} dt$	M1(AO2. 1) A1(AO2. 1)		Using quotient rule, or other valid method $x = 0: \frac{2t}{1+t} = 0 \text{ so } t = 0$ $x = 1: \frac{2t}{1+t} = 1$ $2t = 1 + t$ $so t = 1$	

Question	Answer/Indicative content	Marks	Part marks and guidance		
C	DR use $u = 1 + t$ giving $du = dt$ $\int \frac{2t^2}{(1+t)^3} dt = \int \frac{2(u-1)^2}{u^3} du$	Marks E1(AO1. 1a) M1(AO1. 1a) M1(AO1. 1a) M1(AO1. 1a) M1(AO1. 1a) A1(AO1. 1a) A1(AO1. 1b) [6]	Must be stated explicitly Attempt to change integrand to function of <i>u</i> Obtain correct integrand Attempt integration Attempt use of limits <i>u</i> = 1, 2	Any equivalent form Allow any exact equiv	id guidance
	Total	13	correct exact area		

Qu	estio	n	Answer/Indicative content	Marks	Part marks and guidance
Q u	uestio	а	Answer/Indicative content $x = \ln(t^2 - 4) \Rightarrow \frac{dx}{dt} = \frac{2t}{t^2 - 4}$ $Area = \int \frac{4}{t^2} \left(\frac{2t}{t^2 - 4}\right) dt$ $= \int \frac{8}{t(t^2 - 4)} dt$ $a = 3, b = 4$		Attempt diff erentiation of x using chain rule – must be of the for $\frac{kt}{t^2-4}$ m Use $\int y \frac{dx}{dt} dt$ of with $\frac{dx}{dt}$ their AG Correct limits

Question	Answer/Indicative content	Marks	Part marks and guidance		
b	$\frac{\text{DR}}{\frac{8}{t(t^2 - 4)}} = \frac{A}{t} + \frac{B}{t - 2} + \frac{C}{t + 2}$	B1 (AO 3.1a)	Correct form of partial		
	8 = A(t-2)(t+2) + Bt(t+2) + Ct(t-2)	M1 (AO 1.1a)	Cover up,		
	$A = -2, B = 1, C = 1$ $\int \left(-\frac{2}{t} + \frac{1}{t-2} + \frac{1}{t+2}\right) dt = -2\ln t + \ln(t-2) + \ln(t+2)$	A2 (AO 1.1,1.1) M1* (AO 1.1)	substituting or equating coefficients – must be a complete method for finding one of A, B or C		
	(–2ln4 + ln2 + ln6) – (–2ln3	M1dep* (AO 1.1) M1 (AO	A1 for one correct Attempt to integrate all		
	+ ln1 + ln5)	2.1)	three terms - must be of the form $\alpha \ln t + \beta$ $\ln(t-2) + \gamma$ $\ln(t+2)$ Applying		
	$\left(\frac{27}{20}\right)$	A1 (AO 2.2a) [8]	their limits correctly Correctly combining all their log terms – dependent on both previous M marks $k = \frac{27}{20}$		

Que	Question		Answer/Indicative content	Marks	Part marks and guidance
		С	$t^{2} = \frac{4}{y} \Rightarrow x = \ln\left(\frac{4}{y} - 4\right)$ $e^{x} = \frac{4}{y} - 4 \Rightarrow y = K$ $y = \frac{4}{e^{x} + 4}$ Alternative solution $e^{x} = t^{2} - 4$ $t^{2} = e^{x} + 4 \Rightarrow y = K$ $y = \frac{4}{e^{x} + 4}$	M1* (AO 3.1a) M1dep* (AO 1.1) A1 (AO 1.1) M1* M1dep*	Re-arrange and eliminate t Remove logs and attempt to make y the subject Remove logs
				[3]	Rearrange and eliminate t
			Total	15	

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
7		i	$\frac{dy}{dt} = 2(+) - \frac{2}{t^3}; \frac{dx}{dt} = -\frac{1}{t^2} \text{ oe soi ISW}$ $\frac{2}{t} - 2t^2 \text{ or } -2\left(t^2 - \frac{1}{t}\right), \frac{2t^3 - 2}{-t}, -t^2\left(2 - \frac{2}{t^3}\right) \text{ oe}$	B1, B1 B1	ISW. Must not involve (implied) 'triple-deckers' e.g. fractions with neg powers Examiner's Comments In general, apart from the derivative of $\frac{1}{t}$ being Int in some cases, the differentiation was handled competently. The question asked for the answer to be simplified and many alternatives were accepted — though not fractions with negative powers involved in numerator and	e.g. $\frac{2-2t^{-3}}{-t^2}$
		ii	(Any of their expressions for $\frac{dy}{dx}$) = 0 or their $\frac{dy}{dt}$ = 0	M1	denominator.	
		ii	t = 1 →(stationary point) = (0, 3)	A1	Not awarded if $\frac{dy}{dx}$ is wrong in (i) and used here BUT allow recovery if only explicitly considering $\frac{dy}{dt} = 0$	
		ii	Consider values of x on each side of their critical value of x which lead to finite values of $\frac{dy}{dx}$	M1	ar ar	

Question	Answer/Indicative content	Marks	Part marks and guidance	
ii	Hence (0, 3) is a minimum point www	A1	Totally satis; values of x must be close to 0 & not going below or equal to $x = -1$ Examiner's Comments The stationary point was relatively easy to find; having found t , the question directed candidates to find x and y . It was hoped that this would focus attention on the value of x , as is normal in the classifying of stationary points. However, some considered points on either side of the critical value of t , not realising that this would not indicate which side of the stationary point they were considering.	
iii	Attempt to find t from $x = \frac{1}{t} - 1$ and substitute into the equation for y $y = \frac{2}{x+1} + (x+1)^2$ (can be unsimplified) ISW	M1	Apart from careless errors, this part of the question was well done.	
	Total	9		

Question		Answer/Indicative content	Marks	Part marks and guidance		
8	i	$\frac{A}{x} + \frac{B}{x+2}$	B1	award if only implied to		
	i	x + 8 = A(x + 2) + Bx soi	M1	allow one sign error	clearing fractions successfully	
				Examiner's Comments□□□	,	
				Most recognised the correct form of partial fractions and successfully cleared the fractions to produce a fully		
	i	A = 4 and $B = -3$	A1	correct solution.	if M0, B1 for each value www	
	ii	quotient (P) is 7	B1			
	ii	2x + 16 seen	B1	if B0, B1 for <i>Q</i> = 8 and B1 for <i>R</i> = – 6 www	eg as remainder or in division chunking	
				Examiner's Comments		
				Most candidates used long division and successfully found the quotient and the remainder. Many then used their answer to part (i) to produce a correct solution. A variety of other approaches were also successful, but a significant minority of those who equated coefficients went astray in the algebra. A small number of candidates tried to divide by x and x + 2 separately, and were rarely successful.		
	ii	$7 + \frac{8}{x} - \frac{6}{x+2}$	B1	were rarely succession.	or allow <i>P</i> = 7, <i>Q</i> = 8, <i>R</i> = 6	
	ii		M1*	from $x = \frac{2t}{1-t}$,		
				M0 for t = g(y)		

iii $t = \frac{x}{x+2}$ A1 or B2 if unsupported Examiner's Comments	
There were many well laid out, perfectly correct responses to this question. However, it proved to be surprisingly difficult for many. Sometimes a formula for t in terms of x and t was substituted in, which didn't lead anywhere. In other cases the expression for t contained a sign error or an algebraic slip. Often candidates persisted with a clearly incorrect formula, instead of checking the early part of their work. A few candidates verified the result by substitution, which was a convoluted approach and did not earn full marks. M1dep* M1dep* M1dep* M1dep*	

Questi	on	Answer/Indicative content	Marks	Part marks a	nd guidance
	iii	$y = \frac{7x^2 + 16x + 16}{x(x+2)}$	A1		at least one correct, constructive, intermediate step shown if M0M0, SC2 for substitution of $x = \frac{2t}{1-t}$ in RHS of given equation and completion with at least two correct, constructive intermediate steps to $y = 3t + \frac{4}{t}$ www
	iv	$\int \text{their } (P + \frac{Q}{x} + \frac{R}{x+2})[dx]$	M1*	where <i>P</i> , <i>Q</i> and <i>R</i> are constants obtained in (ii)	allow omission of dx
	iv	$F[x] = 7x + 8\ln x - 6\ln(x+2)$	A1ft	allow recovery from omission of brackets in subsequent working	if M0, SC1 for Px + Qlnx + Rln(x + 2) where constants are unspecified or arbitrary
	iv	F[2] – F[1]	M1dep*		
	iv	7 – 4ln2 + 6ln3	A1	Examiner's Comments There were many excellent responses to this part of the question. Most candidates spotted the link with part (ii) and went on to earn three or four marks. Those who started from scratch were almost never successful.	
		Total	14		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
9		i	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 3t^2 - 3$	B1	
			$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) k \left(2 + t\right)^{-\frac{3}{2}}$	M1	<i>k</i> ≠ 0
			$\frac{dy}{dx} = \frac{3t^2 - 3}{-\frac{1}{2}(2+t)^{-\frac{3}{2}}} \text{ oe isw}$	A1 [3]	do not allow bracket errors in marked answer
			Alternatively $[y =](x^{-2} - 2)^3 - 3x^{-2} + 6$ oe	B1	answei
			$\left[\frac{dy}{dx}\right] = 3(x^{-2} - 2)^2 \times (-2x^{-3}) + 6x^{-3} \text{ oe}$	M1	
			$3\left[\left((2+t)^{-\frac{1}{2}}\right)^{-2} - 2\right]^{2} \times -2\left((2+t)^{-\frac{1}{2}}\right)^{-3}$ $+6\left(\left(2+t\right)^{-\frac{1}{2}}\right)^{-3}$	A 1	allow sign errors and/or one coefficient error
			oe isw	[3]	
					Examiner's Comments
					This was done well by
					most. A few slipped up with
					dx/dt or made bracket or sign errors
					when combining the two derivatives.

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	allow eg $3\ell - 3 = 0$	allow one transcriptio n error	
	(1, 2) oe identified as only stationary point $eg \ t = -0.5, \ x = \sqrt{2}/3 \text{ and }$ gradient = 8.27 $eg \ t = -1.5, \ x = \sqrt{2} \text{ and }$ gradient = -2.65	A1 M1	NB t = -1 considerati on of gradient either side of their x = 1	ignore work with other points for the last two marks ignore work with other points for	
	or eg $t = -0.5$ and $y = 1.375$, $t = -1.5$ and $y = 1.125$	A1 M1	or consider ation of <i>y</i> -values either side of their <i>y</i> =	the last two marks	
	(1, 2) Alternatively, for last two marks evaluation of second derivative at their $t = -1$ or their $x = 1$ or oe $6(2 + t)^2 (7t^2 + 8t - 3)$	A1 [4]	second derivative must be obtained		
	convincing justification that second derivative < 0 [NB – 24] so maximum		from correct method; allow sign errors	omments	

Question	Answer/Indicative content	Marks	Part marks and guidance		
			Most were able to start this part, but often went stray in finding the correct value of t . A significant minority of candidates worked with $t = -2$ and $/$ or $t = 1$, which was pointless as both values are outside the specified range. Even those who did work with $t = -1$ only often went astray in finding x and y . Only a few candidates realised the need to check the x -values as well as the values of the gradient when determining the nature of the stationary point, and those who tried to use the second derivative almost invariably went wrong.		
i	ii $x \ge \frac{1}{\sqrt{2}}$	B1			
	-2 < y ≤ 2	B1 [2]	Examiner's Comments Very few candidates were able to state both ranges correctly.		

Question	Answer/Indicative content	Marks	Part marks and guidance		
iv		B1 [1]	curve with maximum in 1 st quadrant and horizontal asymptote in 4 th quadrant drawn for <i>x</i> ≥ <i>k</i> , where <i>k</i> > 0 Examiner's Comments Only a very small minority sketched the curve successfully. A significant proportion of those who were successful had not managed full marks in the previous parts of the question.		
	Total	10			

Q	uestio	n	Answer/Indicative content	Part marks and guidance	
10		а	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$, where $\frac{dy}{dt} = 3t^2$, $\frac{dx}{dt} = 2t$	*M1 (AO 1.1a)	Correct application
10		а	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}, \text{ where } \frac{dy}{dt} = 3t^2, \frac{dx}{dt} = 2t$ $\frac{dy}{dx} = \frac{3t^2}{2t} \left(= \frac{3}{2}t \right)$ $y - t^3 = \frac{3t^2}{2t} (x - t^2)$ $2y = 3tx - t^3$	*M1 (AO 1.1a) A1 (AO 1.1) dep*M1 (AO 1.1) A1 (AO 2.2a)	
					AG

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
Question	Answer/Indicative content DR Substitute A giving $t^{3} - 3t\left(\frac{19}{12}\right) + 2\left(-\frac{15}{8}\right) = 0, \text{ and}$ attempt factor theorem with $f(t) = 4t^{3} - 19t - 15$, oe $f(-1) = 0 \Rightarrow (t+1) \text{ is a factor}$ $f(t) = (t+1)(4t^{2} - 4t - 15)$ $f(t) = (t+1)(2t-5)(2t+3)$ $t = \frac{5}{2} \text{ only, as } t \ge 0$ $y = 0 \Rightarrow B\left(\frac{25}{12}, 0\right) \text{ and area} = \frac{1}{2} \times \frac{15}{8} \times \frac{25}{12}$ $\text{area} = \frac{125}{64}$	M1 (AO 3.1a) A1 (AO 1.1) M1 (AO 1.1) A1 (AO 1.1) A1 (AO 1.1) A1 (AO 2.2a) [7]	Correctly substitute <i>A</i> into given tangent and attempt to find a factor Attempt to obtain a quadratic factor Use of their <i>t</i> to find <i>B</i> and attempt to find area using their <i>B</i>	By any correct method Their value of <i>t</i> must be positive	nd guidance
	Total	11	_		

Question		Answer/Indicative content	Marks	Part marks a	and guidance		
	i	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin 2t + 2\cos t_{\mathrm{SOI}}$	B1	$NB \frac{dx}{dt} = 2\cos t$	if B0M0A0 SC3 fo $\frac{dy}{dx} = 1 - x$ from correct Cartesian equation		
					seen in part (i) or part (ii) B1 for substitution of <i>x</i> = 2sin <i>t</i>		
	i	$\frac{\mathrm{d}y}{\mathrm{d}x} = \text{their} \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} \text{ oe}$	M1				
	i	$\frac{-2\sin 2t + 2\cos t}{2\cos t} \sin t$	A1				
	i	$\frac{-4\sin t\cos t + 2\cos t}{2\cos t}$	A1	or equivalent intermediate step			
		or $\frac{2\cos t(-2\sin t + 1)}{2\cos t}$ and completion to 1 – 2sin t www					
	i	(1, 1½)	B1	$NB t = \frac{\pi}{6}$	from 1 – 2sin <i>t</i> = 0		
				Examiner's Comments			
				This proved accessible to most, with a good number			
				of candidates achieving full			
				cases "2" went missing from the double angle, and			
				$=\frac{-2\sin t + 2\cos t}{2\cos t} = 1 = 2\sin t$			
				in an attempt to achieve the given answer. Surprisingly, a large number of candidates simply omitted to find the co-ordinates of the turning point, or stopped $t = \frac{\pi}{6}.$			
		i	i $\frac{dy}{dt} = -2\sin 2t + 2\cos t_{SOi}$ i $\frac{dy}{dx} = \text{their} \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ oe}$ i $\frac{-2\sin 2t + 2\cos t}{2\cos t} \text{ soi}$ i $\frac{-4\sin t \cos t + 2\cos t}{2\cos t}$ or $\frac{2\cos t(-2\sin t + 1)}{2\cos t}$ and completion to 1 – 2sin t	i $\frac{dy}{dt} = -2\sin 2t + 2\cos t_{SOi}$ i $\frac{dy}{dx} = \text{their} \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ oe}$ i $\frac{-2\sin 2t + 2\cos t}{2\cos t} \text{ soi}$ i $\frac{-4\sin t \cos t + 2\cos t}{2\cos t}$ or $\frac{2\cos t(-2\sin t + 1)}{2\cos t}$ and completion to 1 - 2sin t	i $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{their} \frac{\mathrm{d}y}{\mathrm{d}t}$ oe $\frac{\mathrm{d}x}{\mathrm{d}t}$ or $\frac{-2\sin 2t + 2\cos t}{2\cos t}$ soi A1 i $\frac{-2\sin 2t + 2\cos t}{2\cos t}$ A1 or equivalent intermediate step or $\frac{2\cos t(-2\sin t + 1)}{2\cos t}$ and completion to $1 - 2\sin < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > t < m > $		

Question	Answer/Indicative content	Marks	Part marks and guidance		
ii	$(y =) 1 - 2\sin^2 t + 2\sin t$	B1	may be awarded after correct substitution for x eg $(y =) 1 - \frac{x^2}{4} - \sin^2 t +$ $2\sin t$	or $(y =) x + \cos 2t$	
ii	substitution of $\sin t = \frac{1}{2}x$ to eliminate t	M1		substitution of $t = \sin^{-1}(x/2)$ to eliminate t	
ii	$y = 1 + x - \frac{1}{2}x^2$ oe isw	A1	or B3 www Examiner's Comments	$y = x + \cos 2(\sin^{-1}(x/2))$ oe isw	
			Those who attempted to find a polynomial equation often went astray in the substitution: $x^2 = (2\sin t)^2 = 2\sin^2 t$ was a common error, leading to $y = 1 - x^2 + x$. It was not always clear what substitution candidates were making: in cases where it went wrong a method mark was sometimes lost. Weaker candidates opted for an equation involving $\arcsin(\frac{x}{2})$; this nearly always resulted in zero in part (iii).		
iii	$-2 \le x \le 2$ or $x \ge -2$ (and) $x \ge 2$ or $ x \le 2$	B1	cao		
iii	sketch of negative quadratic with endpoints in 1 st and 3 rd quadrants	M1	RH point must be to the right of the maximum		

Q	Question		Answer/Indicative content	Marks	Part marks and guidance			
		iii	positive <i>y</i> -intercept and one distinguishing feature isw	A1	Examiner's Comments Some candidates were able to deduce the range of values for <i>x</i> , but more often than not did not take the hint and relate this to their sketch. Only the best candidates produced a graph of the correct shape with endpoints in the correct quadrants, and only a handful identified a correct distinguishing feature for the third mark.	one from: endpoints $(-2, -3)$ and $(2, 1)$, vertex at $(1, 1\frac{1}{2})$, y - intercept is $(0, 1)$, x - intercept is $(1 -\sqrt{3}, 0)$		
			Total	11				

Q	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
12		а	$y = 0 \Rightarrow (t = 0 \text{ or}) \cos t t = 0$ $k = \frac{1}{2}\pi$	M1 (AO1.1a) A1 (AO2.2a) [2]	Setting <i>y</i> = 0		
		b	$\frac{\mathrm{d}y}{\mathrm{d}t} = \cos t - t \sin t$	M1 (AO1.1) A1 (AO1.1) [2]	Attempt at product rule – allow sign errors		
		C	$\cos t - t \sin t = 0 \Rightarrow \left(1 - \frac{1}{2}t^2\right) - t(t) = 0$ $\frac{3}{2}t^2 = 1 \Rightarrow t = \dots$ $t = \sqrt{\frac{2}{3}}$ $x \approx 0.2$	M1* (AO2.1) dep*M1 (AO1.1) A1 (AO1.1) A1 (AO2.2a) [4]	Setti dy dr = 0 an ng d substituting small angle approximati ons for both sine and cosine Simplify and attempt to solve for t (with correct order of operations) Condone 0.18	Allow ± 0.1821878	

Question	Answer/Indicative content	Marks		Part marks and	guidance
d	(i) $I = \int t \cos t \left(\frac{1}{4} \cos t\right) dt$	M1 (AO1.2)	Attempted use of $\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t$	Ignore limits for first two marks	
	$= \frac{1}{4} \int t \left(\frac{1}{2} (1 + \cos 2t) \right) dt$	M1 (AO3.1a)	Use of $\cos^2 t = \frac{1}{2}(1 + \cos 2t)$	Allow sign errors in	
	$= \frac{1}{8} \int_0^{\frac{1}{2}\pi} t (1 + \cos 2t) \mathrm{d}t$	A1FT (AO2.2a) [3]	$a = \frac{1}{2}\pi$ FT their k from	identity	
	(ii) DR		part (a)		
	$\int t \cos 2t dt = \frac{1}{2} t \sin 2t - \frac{1}{2} \int \sin 2t dt$	M1* (AO2.1)	$b = \frac{1}{8}$	For any	
	$\int t \cos 2t \mathrm{d}t = \frac{1}{2} t \sin 2t + \frac{1}{4} \cos 2t$	A1 (AO1.1)	$\int t \cos 2t dt$ $= \alpha t \sin 2t$	non–zero α, β	
	$\int t \mathrm{d}t = \frac{1}{2}t^2$	B1 (AO1.1)	$\pm \beta \int \sin 2t$ dt Must be		
	$I = \frac{1}{16} \left[t^2 \right]_0^{\frac{1}{2}\pi} + \frac{1}{8} \left[\frac{1}{2} t \sin 2t + \frac{1}{4} \cos 2t \right]_0^{\frac{1}{2}\pi}$	dep*M1 (AO1.1)	seen		
	$= \frac{1}{64}(\pi^2 - 4)$ Alternative method	A1 (AO2.2a)			
	$\int t(1+\cos 2t) dt = t\left(t + \frac{1}{2}\sin 2t\right) - \int \left(t + \frac{1}{2}\sin 2t\right) dt$	M1*	Use of 0 and their <i>k</i> in their integrated expression		
	$= t \left(t + \frac{1}{2} \sin 2t \right) - \left(\frac{1}{2} t^2 - \frac{1}{4} \cos 2t \right)$	A1	Or exact equivalent		
	$I = \left[t\left(t + \frac{1}{2}\sin 2t\right)\right]_0^{\frac{1}{2}\pi} - \left[\frac{1}{2}t^2 - \frac{1}{4}\cos 2t\right]_0^{\frac{1}{2}\pi}$	A1	For ottower's		
	$=\frac{1}{64}(\pi^2-4)$	dep*M1	For attempt at integration by parts		

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		nd guidance
				A1 [5]	Correct first application Complete integration correct Use of 0 and their <i>k</i> in their integrated expression Or exact		
			Total	16	equivalent		